Classification of Metamorphic Rocks
Classification of metamorphic rocks is based on mineral assemblage, texture, protolith, and bulk chemical composition of the rock. Each of these will be discussed in turn, then we will summarize how metamorphic rocks are classified.
Classification of Metamorphic Rocks
Classification of metamorphic rocks depends on what is visible in the
rock and its degree of metamorphism. Note that classification is
generally loose and practical such that names can be adapted to describe
the rock in the most satisfactory way that conveys the important
characteristics. Three kinds of criteria are normally employed. These
are:- Mineralogical - The most distinguishing minerals are used as a prefix to a textural term. Thus, a schist containing biotite, garnet, quartz, and feldspar, would be called a biotite-garnet schist. A gneiss containing hornblende, pyroxene, quartz, and feldspar would be called a hornblende-pyroxene gneiss. A schist containing porphyroblasts of K-feldspar would be called a K-spar porphyroblastic schist.
- Chemical - If the general chemical composition can be determined from the mineral assemblage, then a chemical name can be employed. For example a schist with a lot of quartz and feldspar and some garnet and muscovite would be called a garnet-muscovite quartzo-feldspathic schist. A schist consisting mostly of talc would be called a talc-magnesian schist.
- Protolithic - If a rock has undergone only slight metamorphism such that its original texture can still be observed then the rock is given a name based on its original name, with the prefix meta- applied. For example: metabasalt, metagraywacke, meta-andesite, metagranite.
Texture of Metamorphic Rocks
In metamorphic rocks individual minerals may or may not be bounded by crystal faces. Those that are bounded by their own crystal faces are termed idioblastic. Those that show none of their own crystal faces are termed xenoblastic. From examination of metamorphic rocks, it has been found that metamorphic minerals can be listed in a generalized sequence, known as the crystalloblastic series, listing minerals in order of their tendency to be idioblastic. In the series, each mineral tends to develop idioblastic surfaces against any mineral that occurs lower in the series. This series is listed below:This series can, in a rather general way, enable us to determine the origin of a given rock. For example a rock that shows euhedral plagioclase crystals in contact with anhedral amphibole, likely had an igneous protolith, since a metamorphic rock with the same minerals would be expected to show euhedral amphibole in contact with anhedral plagioclase.
- Rutile, sphene, magnetite
- Tourmaline kyanite, staurolite, garnet, andalusite
- Epidote, zoisite, lawsonite, forsterite
- Pyroxenes, amphiboles, wollastonite
- Micas, chlorites, talc, stilpnomelane, prehnite
- Dolomite, calcite
- Scapolite, cordierite, feldspars
- Quartz
Classification of Metamorphic Rocks |
Another aspect of the crystalloblastic series is that minerals high on the list tend to form porphyroblasts (the metamorphic equivalent of phenocrysts), although K-feldspar (a mineral that occurs lower in the list) may also form porphyroblasts. Porphyroblasts are often riddled with inclusions of other minerals that were enveloped during growth of the porphyroblast. These are said to have a poikioblastic texture.
Most metamorphic textures involve foliation. Foliation is generally caused by a preferred orientation of sheet silicates. If a rock has a slatey cleavage as its foliation, it is termed a slate, if it has a phyllitic foliation, it is termed a phyllite, if it has a shistose foliation, it is termed a schist. A rock that shows a banded texture without a distinct foliation is termed a gneiss. All of these could be porphyroblastic (i.e. could contain porhyroblasts).
A rock that shows no foliation is called a hornfels if the grain size is small, and a granulite, if the grain size is large and individual minerals can be easily distinguished with a hand lens.
Protolith
Protolith refers to the original rock, prior to metamorphism. In low grade metamorphic rocks, original textures are often preserved allowing one to determine the likely protolith. As the grade of metamorphism increases, original textures are replaced with metamorphic textures and other clues, such as bulk chemical composition of the rock, are used to determine the protolith.Bulk Chemical Composition
The mineral assemblage that develops in a metamorphic rock is dependent on- The pressure and temperature reached during metamorphism
- The composition of any fluid phase present during metamorphism, and
- The bulk chemical composition of the rock.
- Pelitic. These rocks are derivatives of aluminous sedimentary rocks like shales and mudrocks. Because of their high concentrations of alumina they are recognized by an abundance of aluminous minerals, like clay minerals, micas, kyanite, sillimanite, andalusite, and garnet.
- Quartzo-Feldspathic. Rocks that originally contained mostly quartz and feldspar like granitic rocks and arkosic sandstones will also contain an abundance of quartz and feldspar as metamorphic rocks, since these minerals are stable over a wide range of temperature and pressure. Those that exhibit mostly quartz and feldspar with only minor amounts of aluminous minerals are termed quartzo-feldspathic.
- Calcareous. Calcareous rocks are calcium rich. They are usually derivatives of carbonate rocks, although they contain other minerals that result from reaction of the carbonates with associated siliceous detrital minerals that were present in the rock. At low grades of metamorphism calcareous rocks are recognized by their abundance of carbonate minerals like calcite and dolomite. With increasing grade of metamorphism these are replaced by minerals like brucite, phlogopite (Mg-rich biotite), chlorite, and tremolite. At even higher grades anhydrous minerals like diopside, forsterite, wollastonite, grossularite, and calcic plagioclase.
- Basic. Just like in igneous rocks, the general term basic refers to low silica content. Basic metamorphic rocks are generally derivatives of basic igneous rocks like basalts and gabbros. They have an abundance of Fe-Mg minerals like biotite, chlorite, and hornblende, as well as calcic minerals like plagioclase and epidote.
- Magnesian. Rocks that are rich in Mg with relatively less Fe, are termed magnesian. Such rocks would contain Mg-rich minerals like serpentine, brucite, talc, dolomite, and tremolite. In general, such rocks usually have an ultrabasic protolith, like peridotite, dunite, or pyroxenite.
- Ferriginous. Rocks that are rich in Fe with little Mg are termed ferriginous. Such rocks could be derivatives of Fe-rich cherts or ironstones. They are characterized by an abundance of Fe-rich minerals like greenalite (Fe-rich serpentine), minnesotaite (Fe-rich talc), ferroactinolite, ferrocummingtonite, hematite, and magnetite at low grades, and ferrosilite, fayalite, ferrohedenbergite, and almandine garnet at higher grades.
- Manganiferrous. Rocks that are characterized by the presence of Mn-rich minerals are termed manganiferrous. They are characterized by such minerals as Stilpnomelane and spessartine.